Carnegie Mellon University Heinzcollege

Time Series Analysis with Recurrent Neural Networks (RNNs), and Roughly How Learning a Deep Net Works

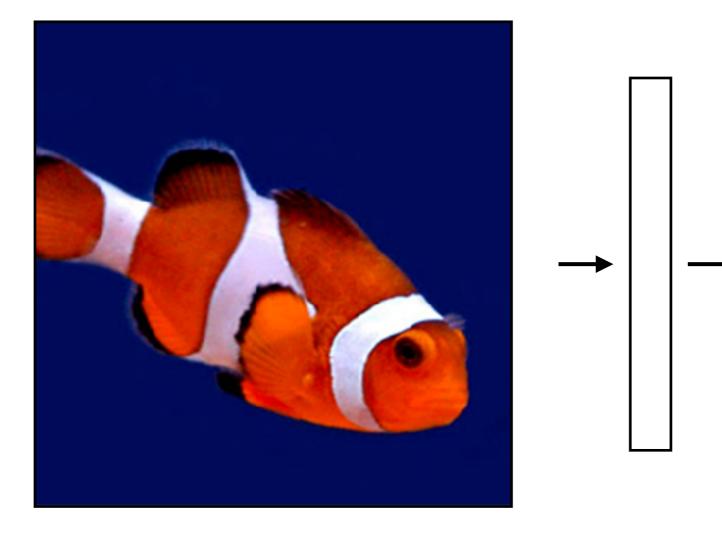
George Chen

It's Gauss's birthday

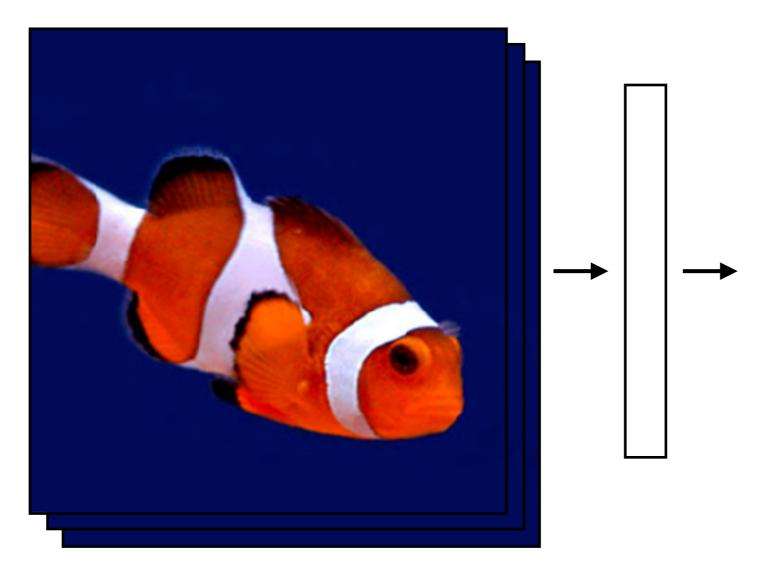
One of the original "AI" researchers

Time series analysis with Recurrent Neural Networks (RNNs)

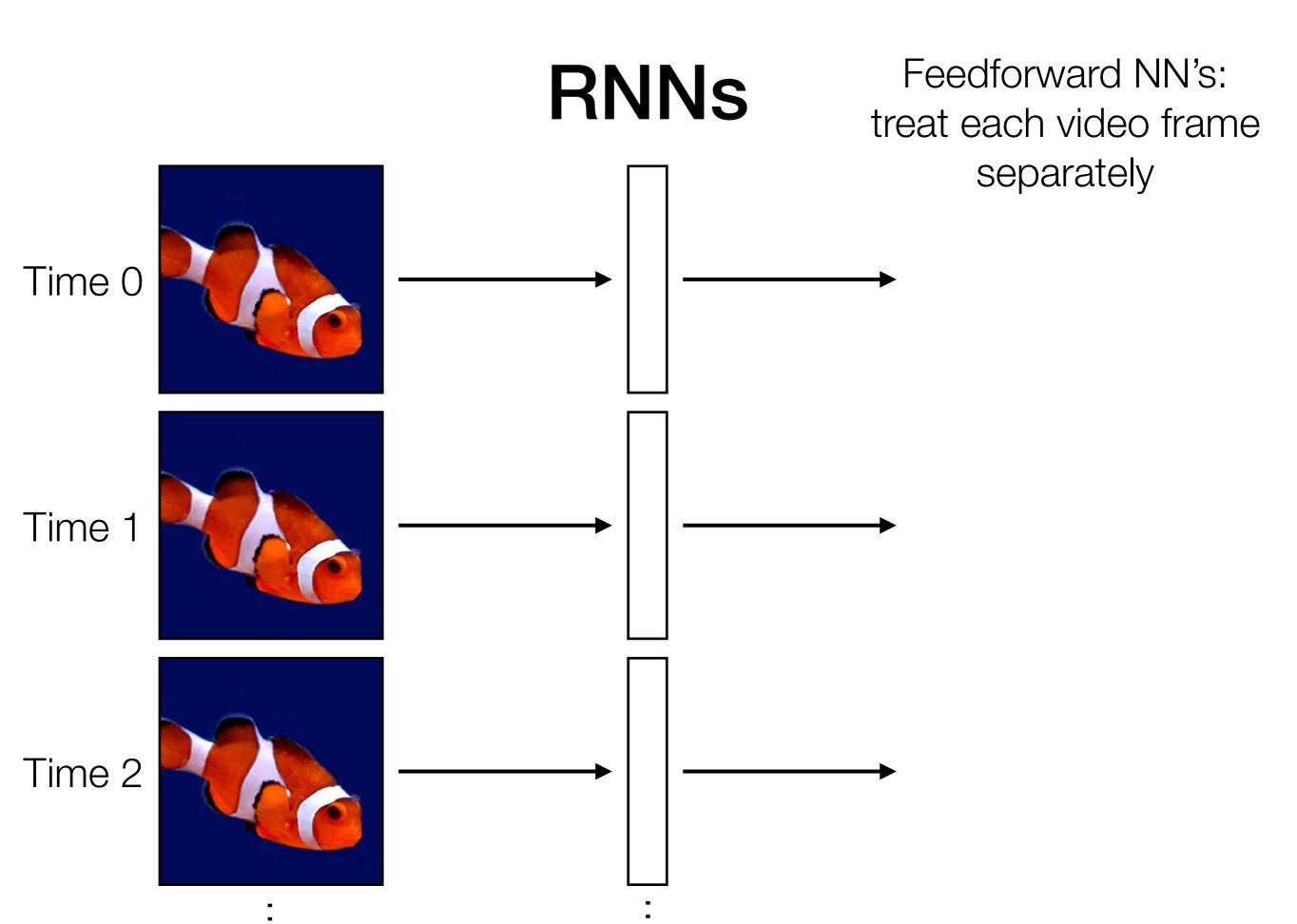
What we've seen so far are "feedforward" NNs

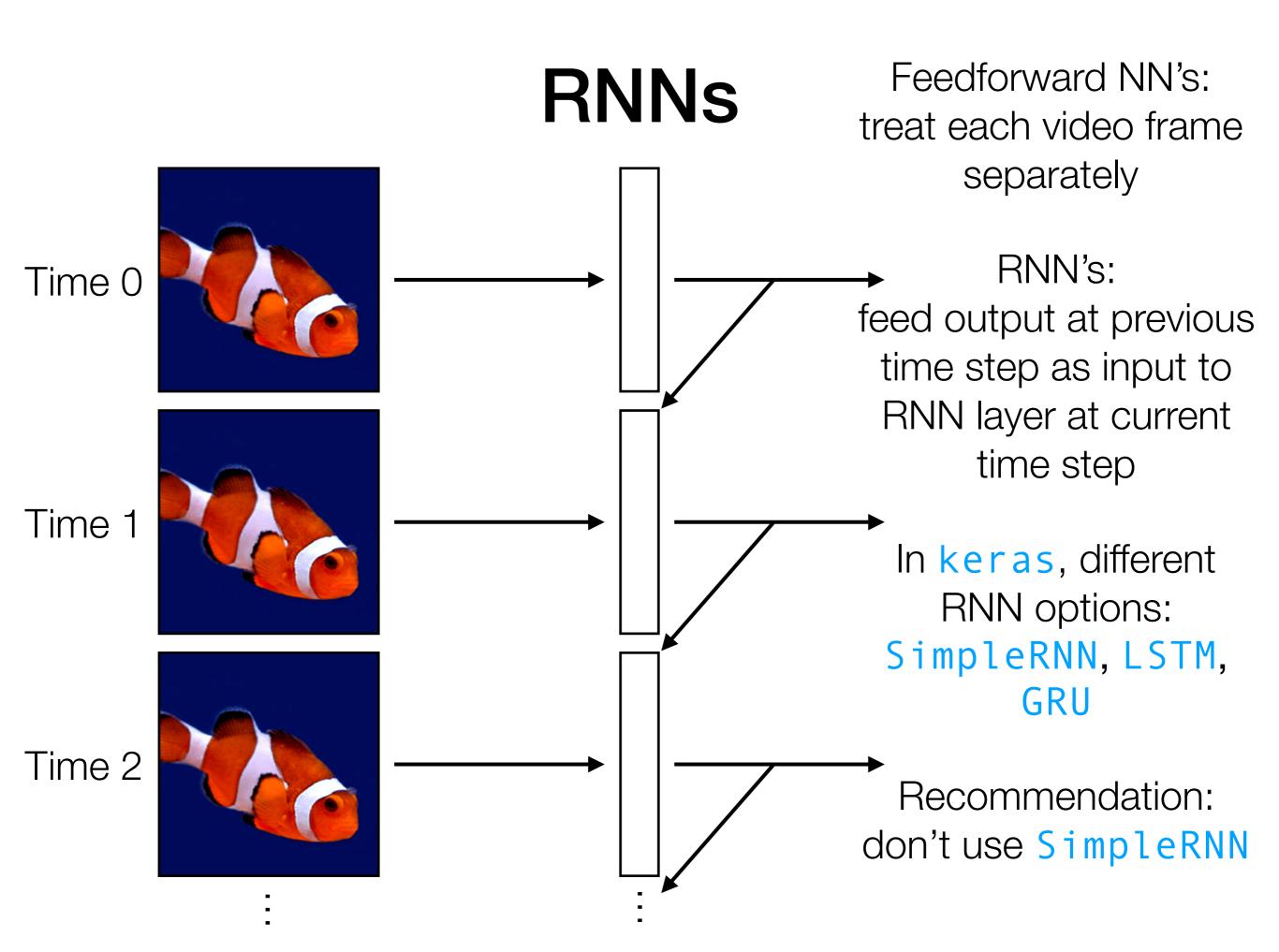


What we've seen so far are "feedforward" NNs



What if we had a video?





Feedforward NN's: treat each video frame separately

RNN's:

feed output at previous time step as input to RNN layer at current time step

In keras, different RNN options: SimpleRNN, LSTM, GRU

Recommendation: don't use SimpleRNN

Time series

RNN layer

Under the Hood

```
current_state = 0
for input in input_sequence:
  output = f(input, current_state)
  current_state = output
```

Different functions f correspond to different RNNs

Example: SimpleRNN

current_state = output

Activation function could, for instance, be ReLU

Parameters: weight matrices W & U, and bias vector b

Key idea: it's like a dense layer in a for loop with some memory!

Feedforward NN's: treat each video frame separately

RNN's:

readily chains together with other neural net layers

Time series

feed output at previous time step as input to RNN layer at current time step

In keras, different RNN options: SimpleRNN, LSTM, GRU

like a dense layer that has memory

RNN layer

Recommendation: don't use SimpleRNN

RNN layer

like a dense layer

that has memory

Feedforward NN's: treat each video frame separately

RNN's:

readily chains together with other neural net layers

Time series

feed output at previous time step as input to RNN layer at current time step

In keras, different RNN options: SimpleRNN, LSTM, GRU

Recommendation: don't use SimpleRNN

Feedforward NN's: treat each video frame separately

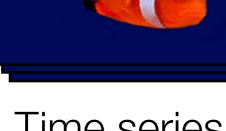
RNN's:

readily chains together with other neural net layers

feed output at previous time step as input to RNN layer at current time step

In keras, different RNN options: SimpleRNN, LSTM, GRU

Recommendation: don't use SimpleRNN



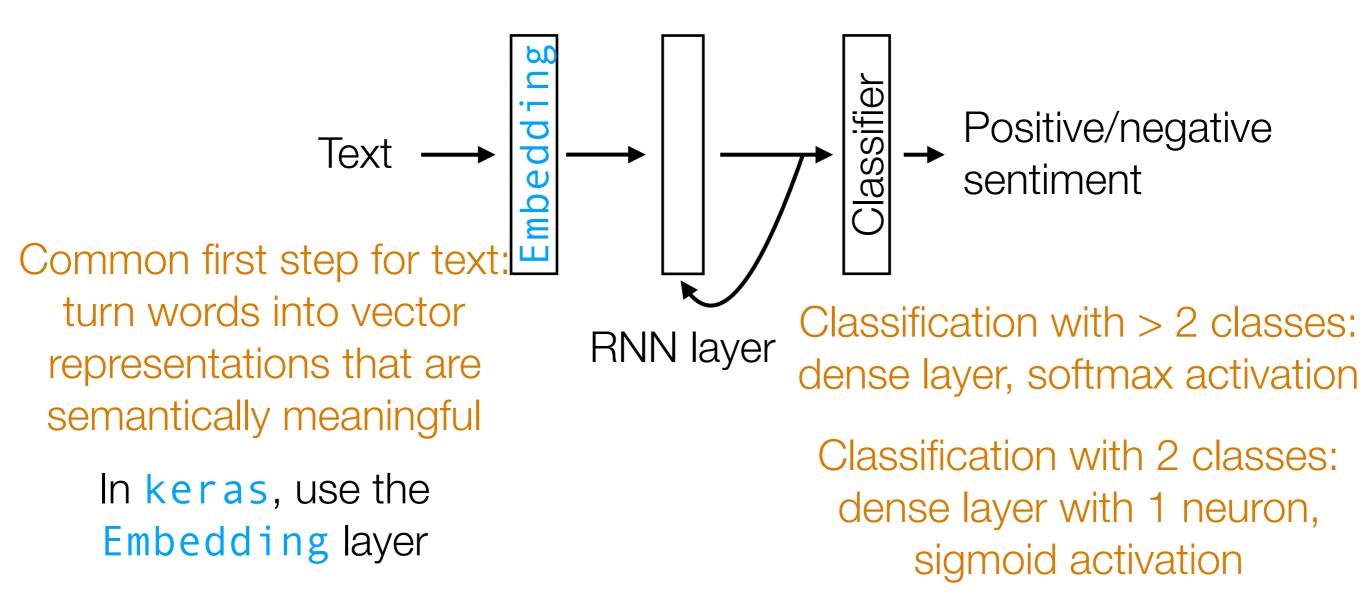
Time series

RNN layer

lassif

like a dense layer that has memory

Example: Given text (e.g., movie review, Tweet), figure out whether it has positive or negative sentiment (binary classification)



Demo

- Neatly handles time series in which there is some sort of global structure, so memory helps
 - If time series doesn't have global structure, RNN performance might not be much better than 1D CNN
- An RNN layer by itself doesn't take advantage of image/text structure!
 - For images: combine with convolution layer(s)
 - For text: combine with embedding layer

A Little Bit More Detail

Simple RNN: has trouble remembering things from long ago...

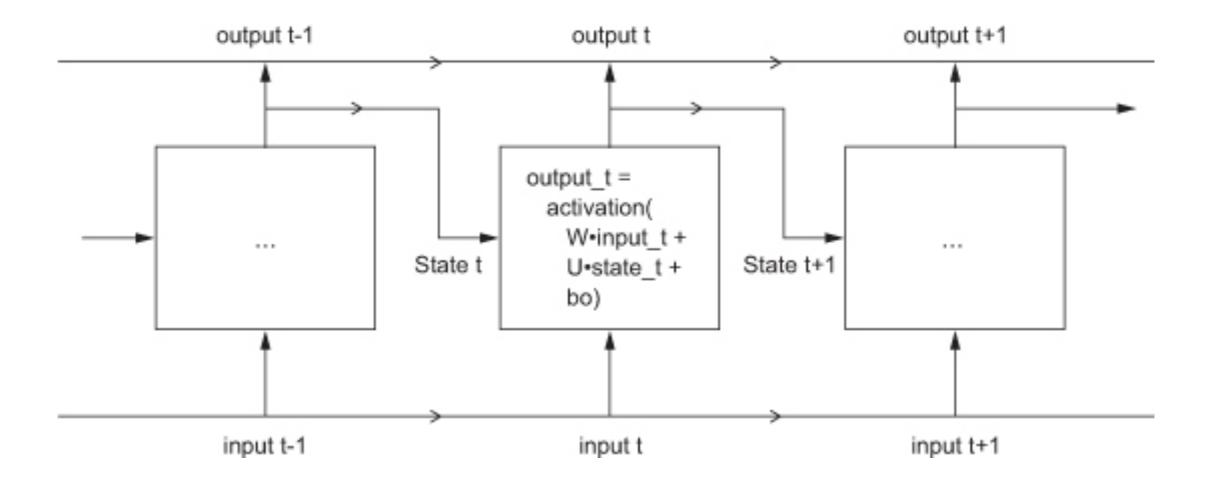


Figure 6.13 from Francois Chollet's book Deep Learning with Python

A Little Bit More Detail

Introduce a "carry" state for tracking longer term memory

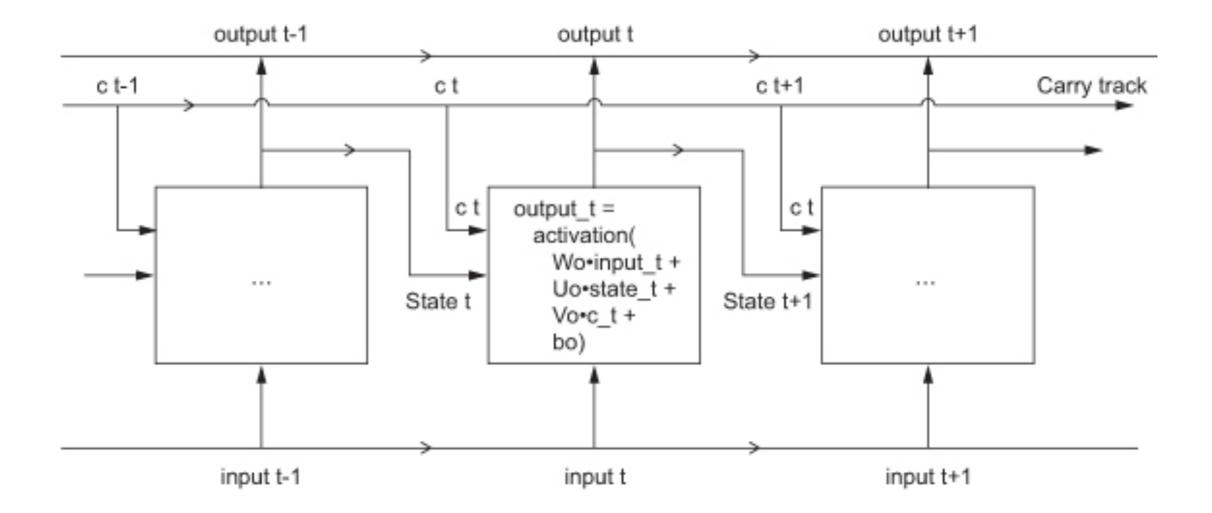


Figure 6.14 from Francois Chollet's book Deep Learning with Python

A Little Bit More Detail

LSTM: figure out how to update "carry" state

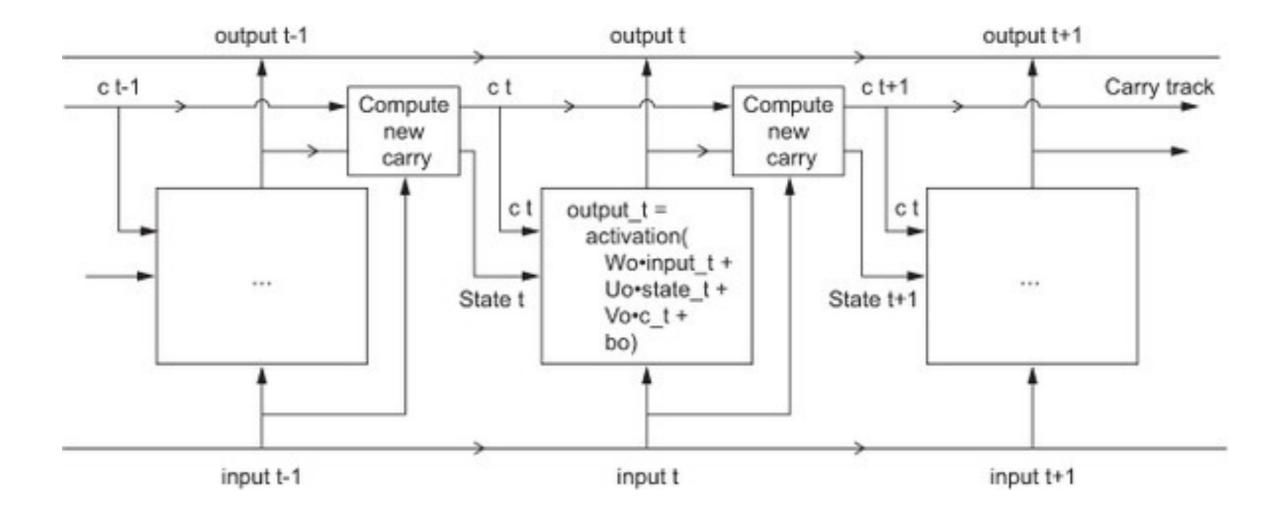


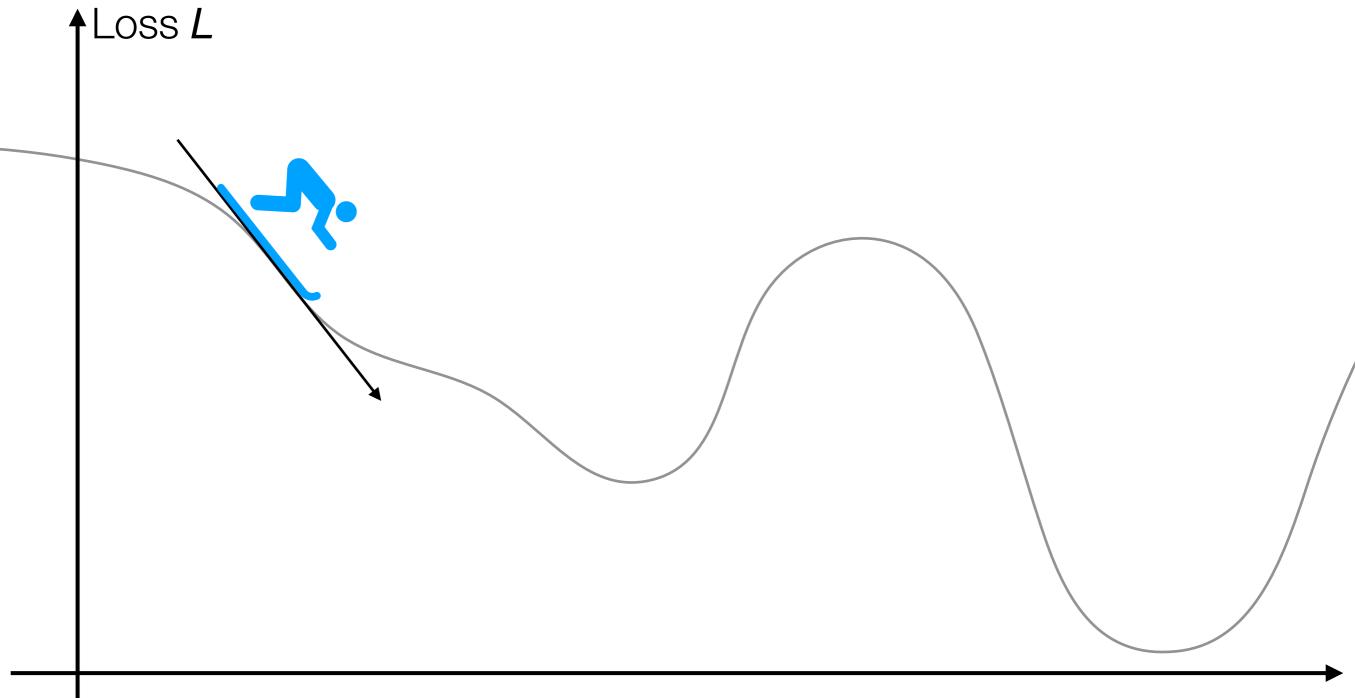
Figure 6.15 from Francois Chollet's book Deep Learning with Python

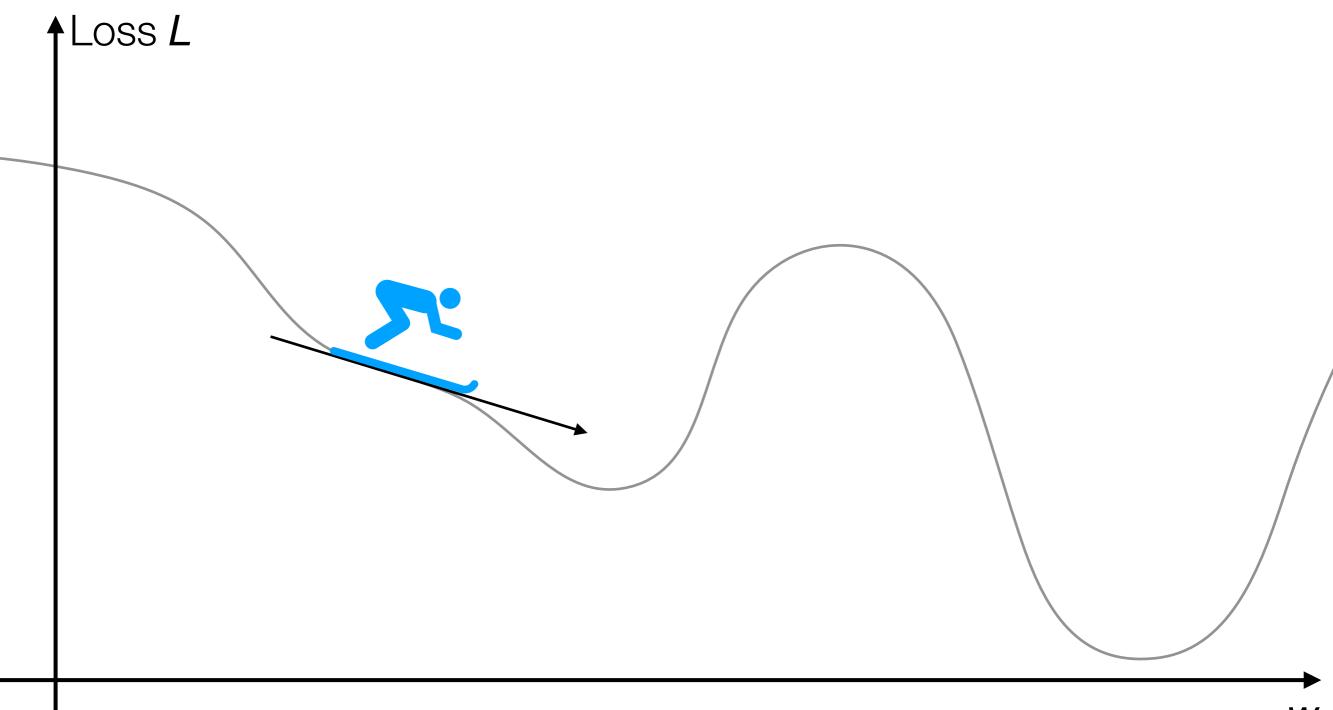
Learning a Deep Net

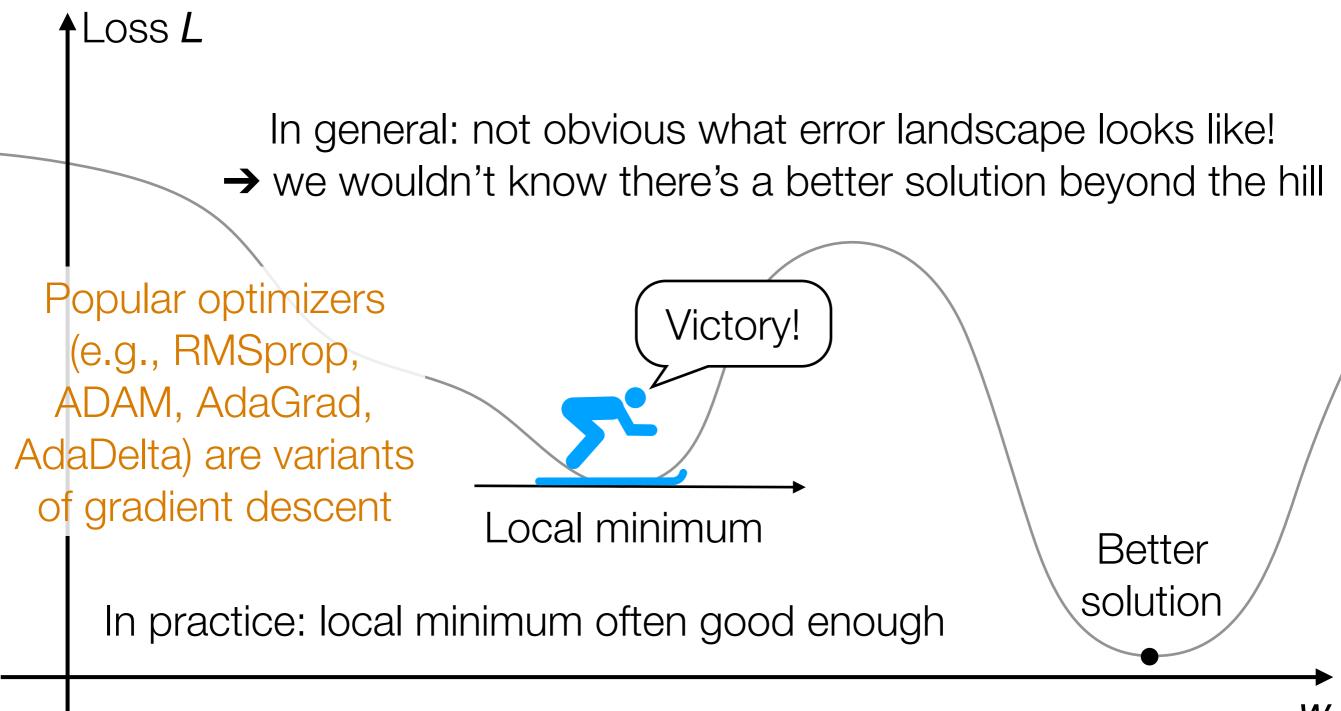
Suppose the neural network has a single real number parameter w

Loss *L* The skier wants to get to the lowest point The skier should move rightward (positive direction) The derivative $\frac{\Delta L}{\Delta w}$ at the skier's position is *negative* tangent line initial guess of good parameter setting In general: the skier should move in *opposite* direction of derivative In higher dimensions, this is called gradient descent (derivative in higher dimensions: gradient)

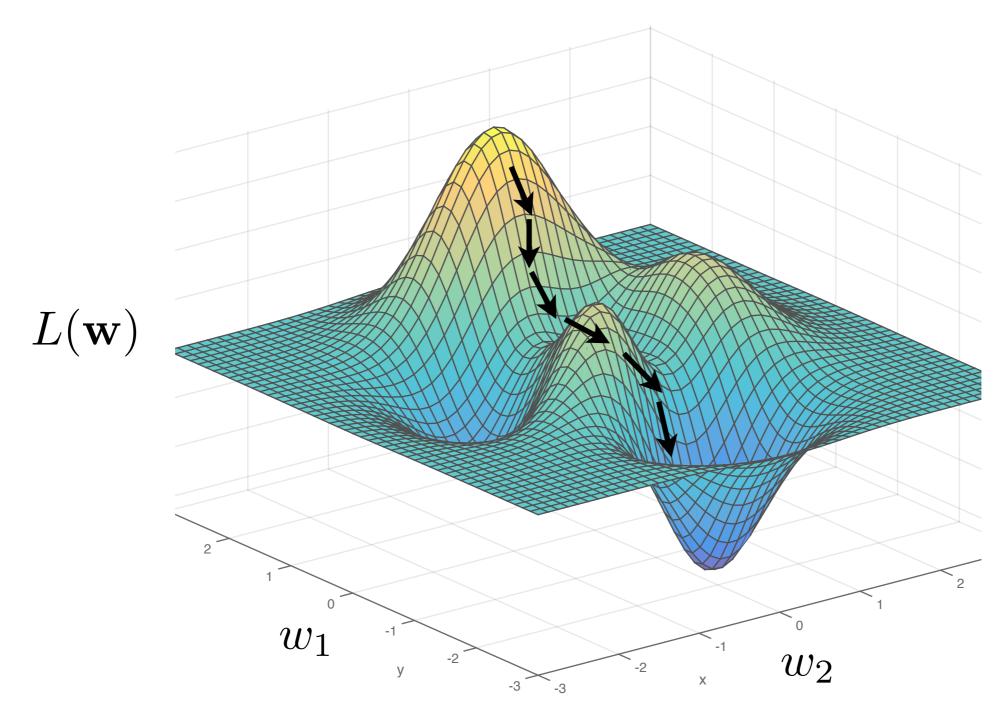








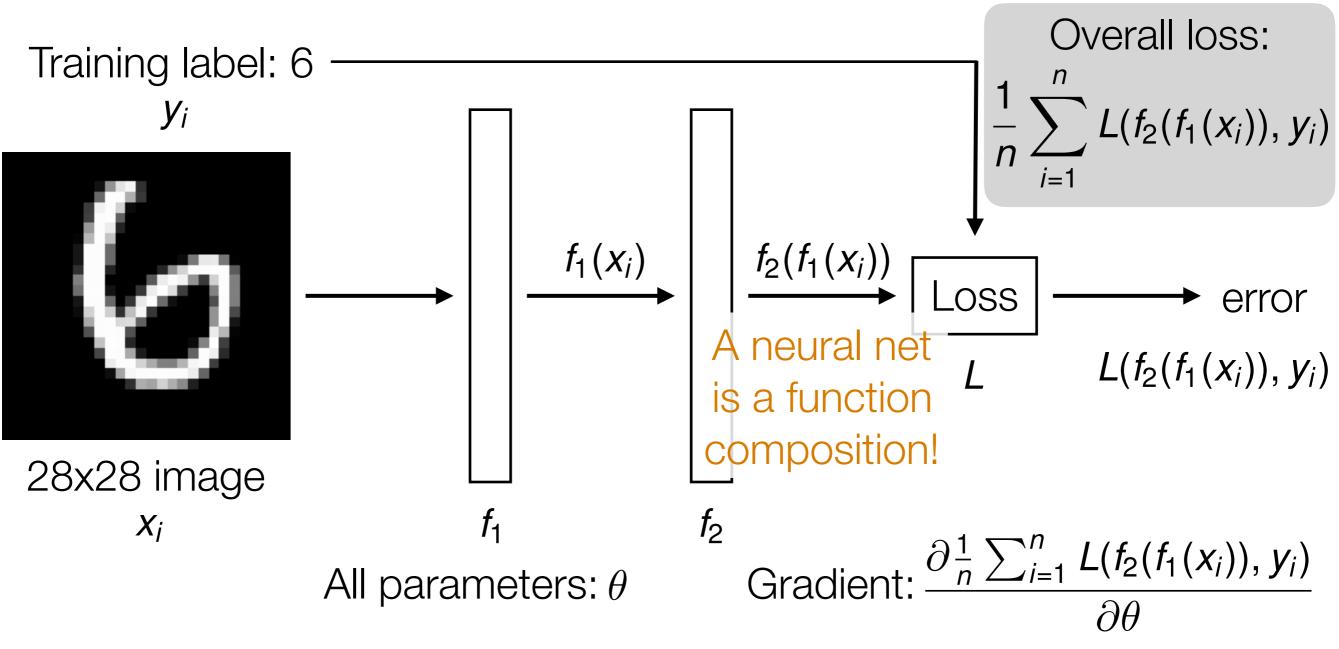
2D example



Slide by Phillip Isola

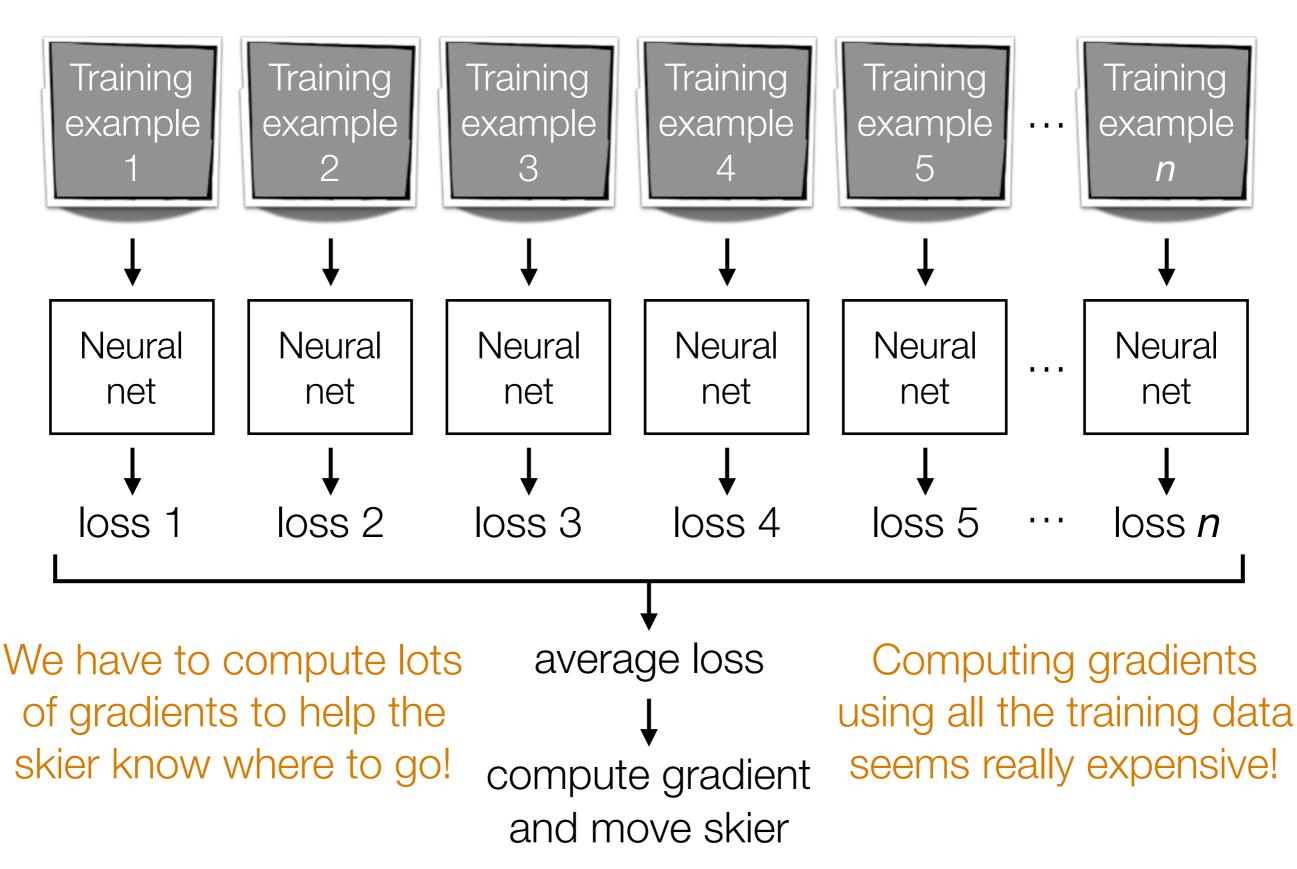
Remark: In practice, deep nets often have > *millions* of parameters, so *very* high-dimensional gradient descent

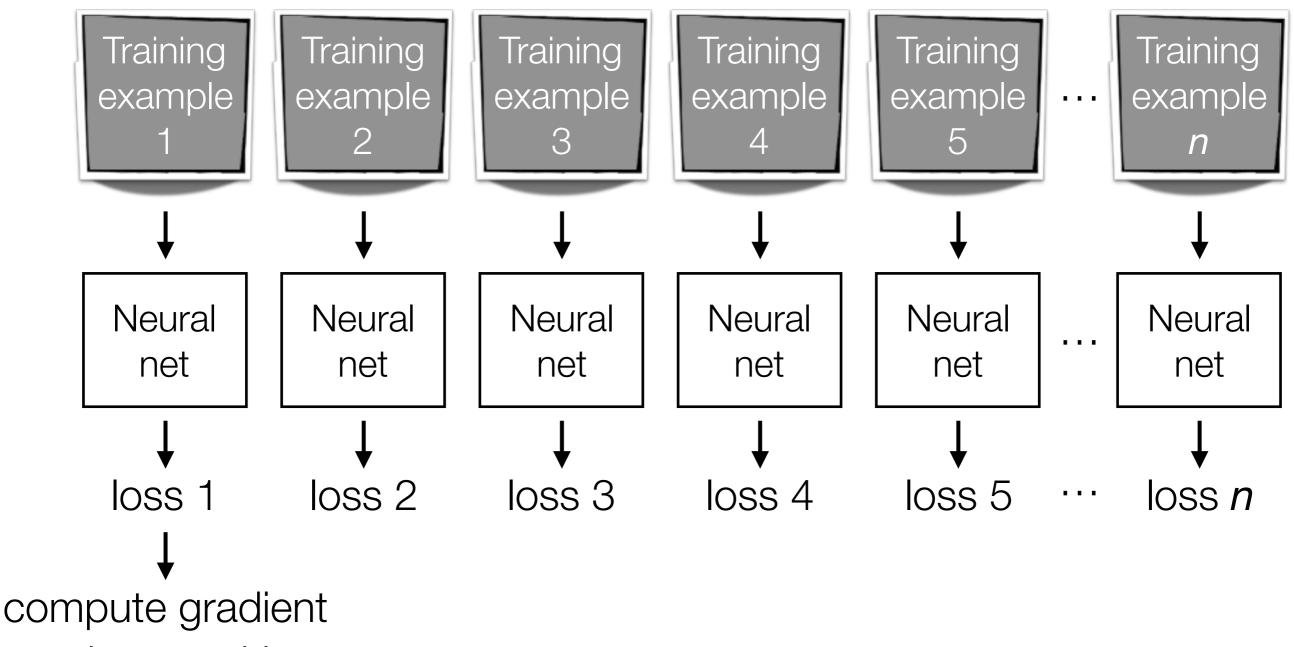
Handwritten Digit Recognition



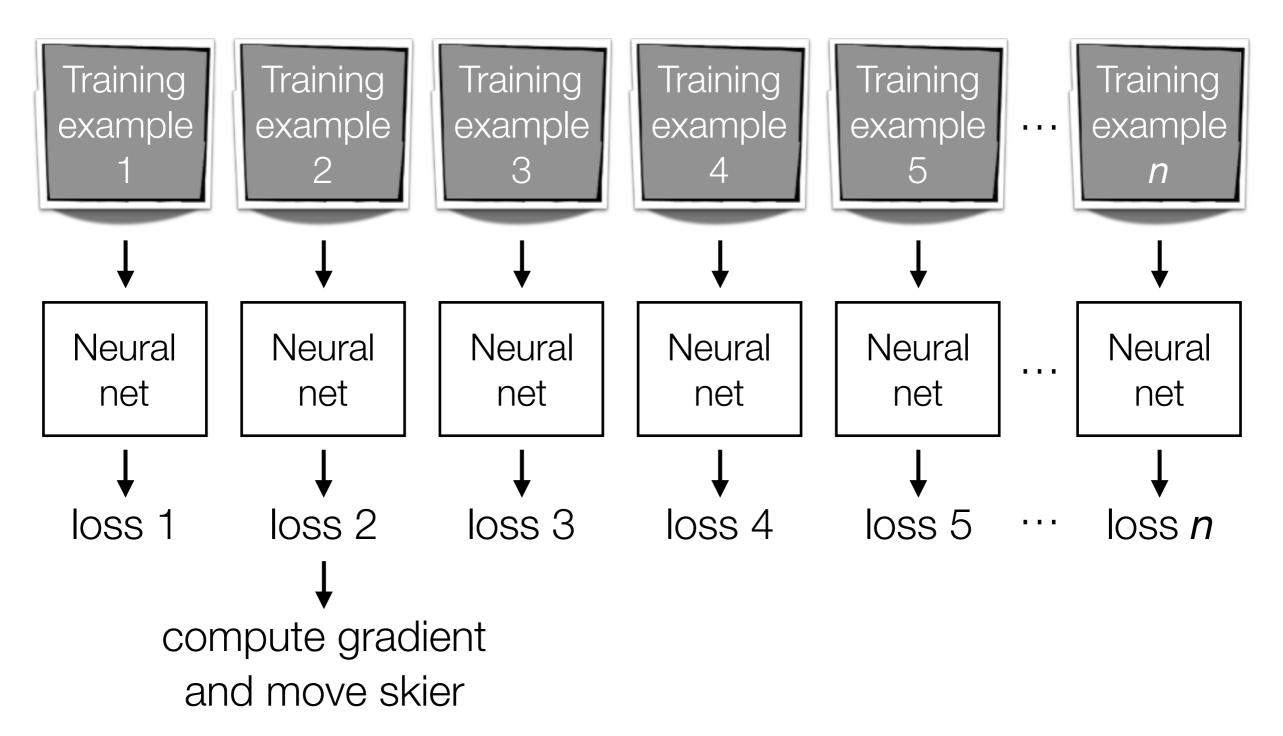
Automatic differentiation is crucial in learning deep nets!

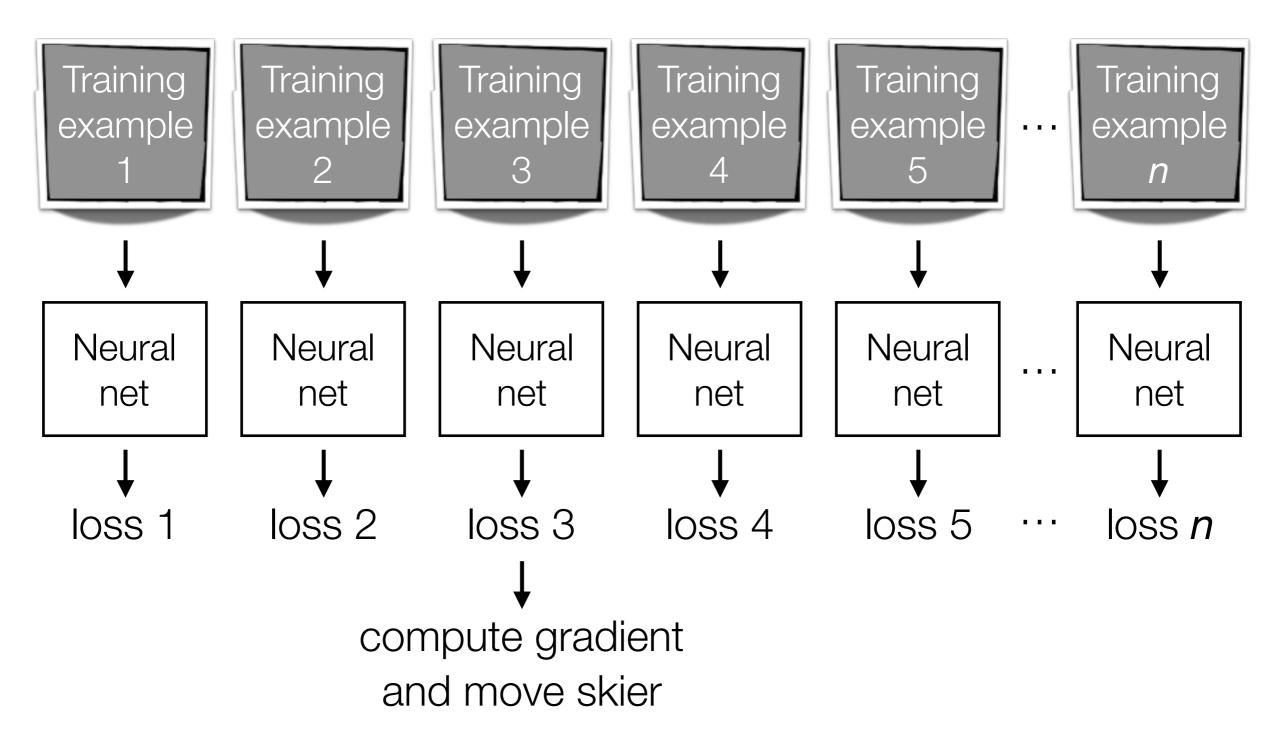
Careful derivative chain rule calculation: back-propagation

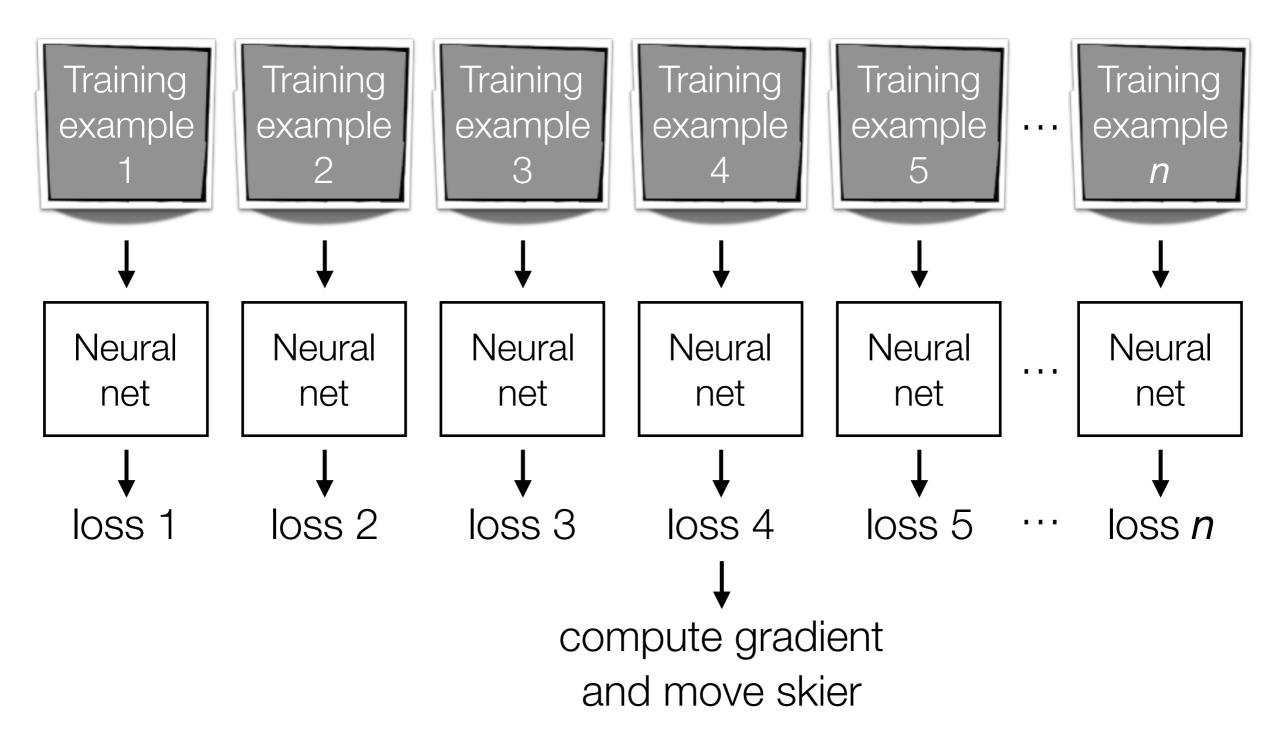


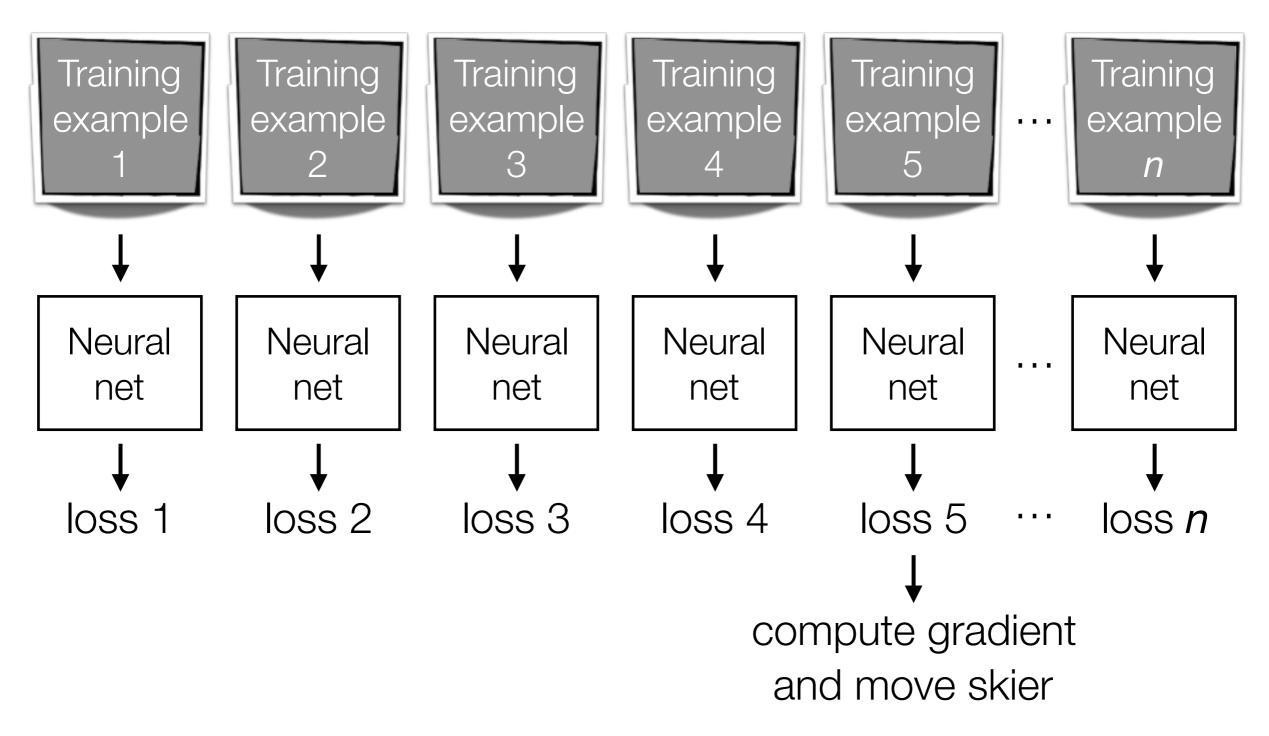


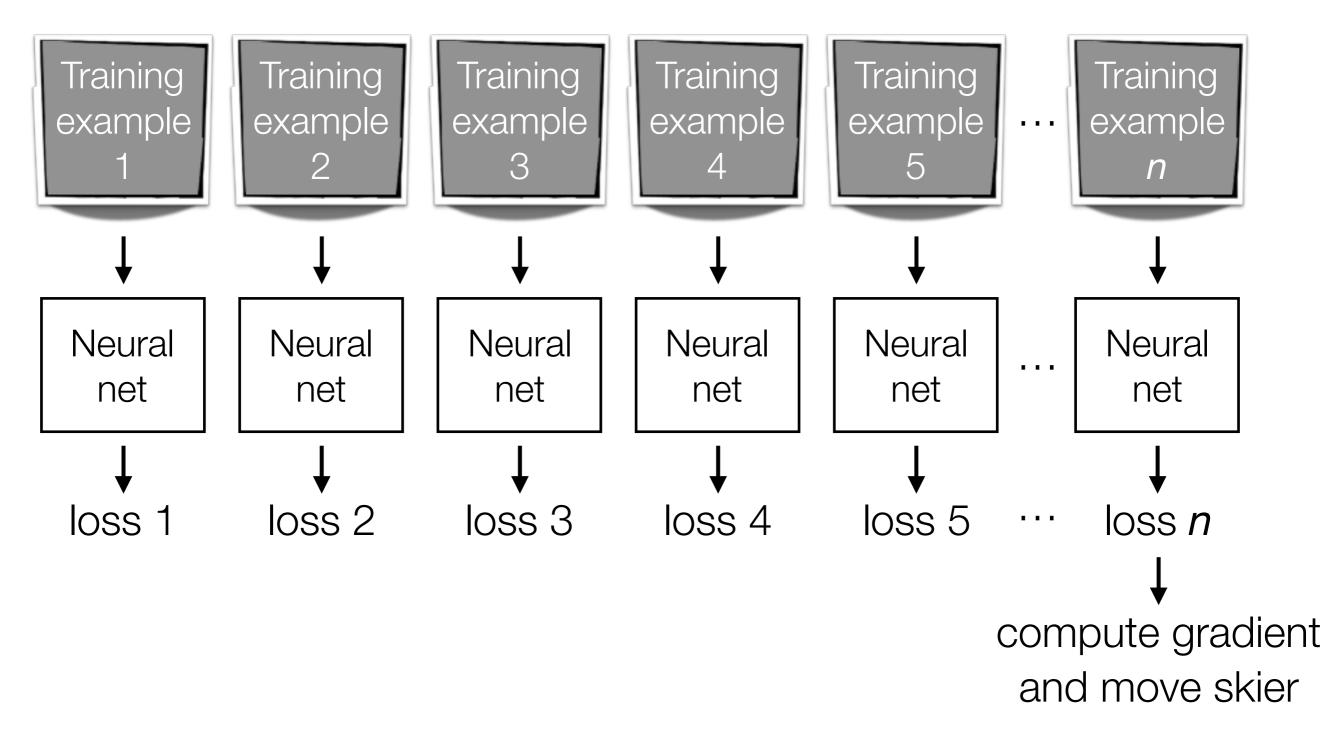
and move skier

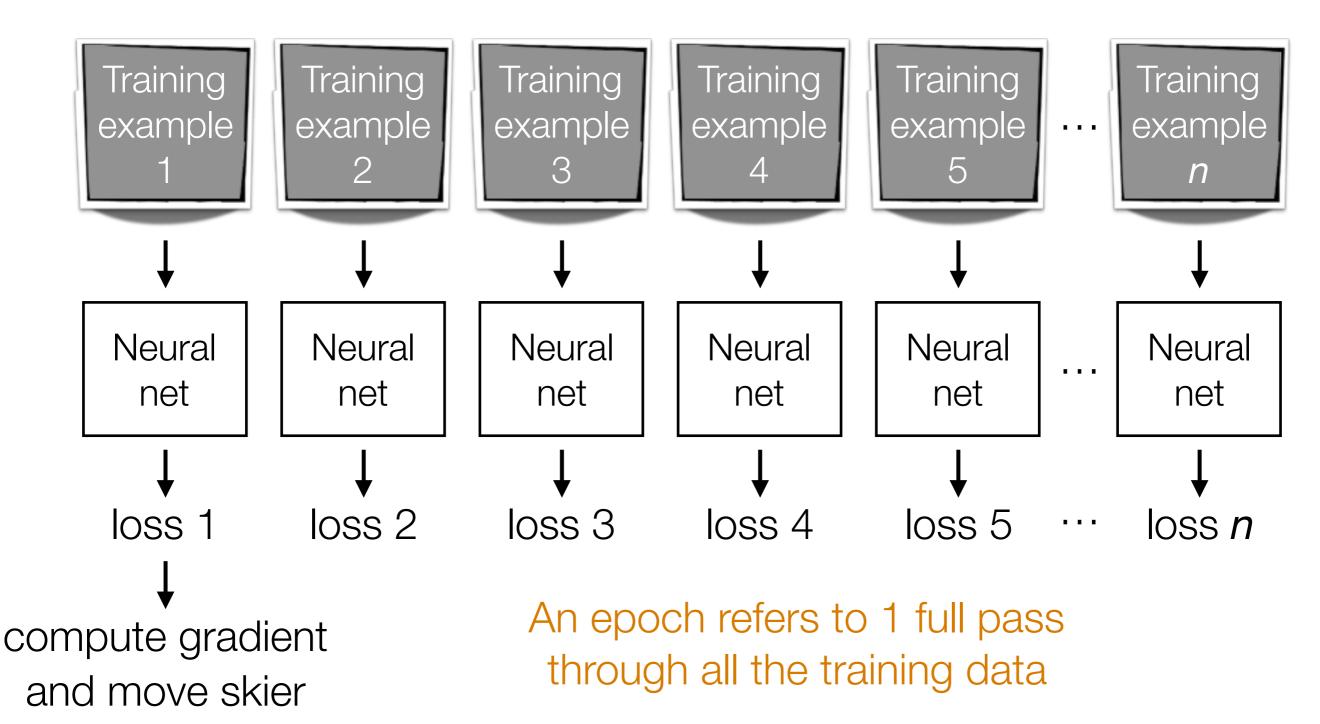




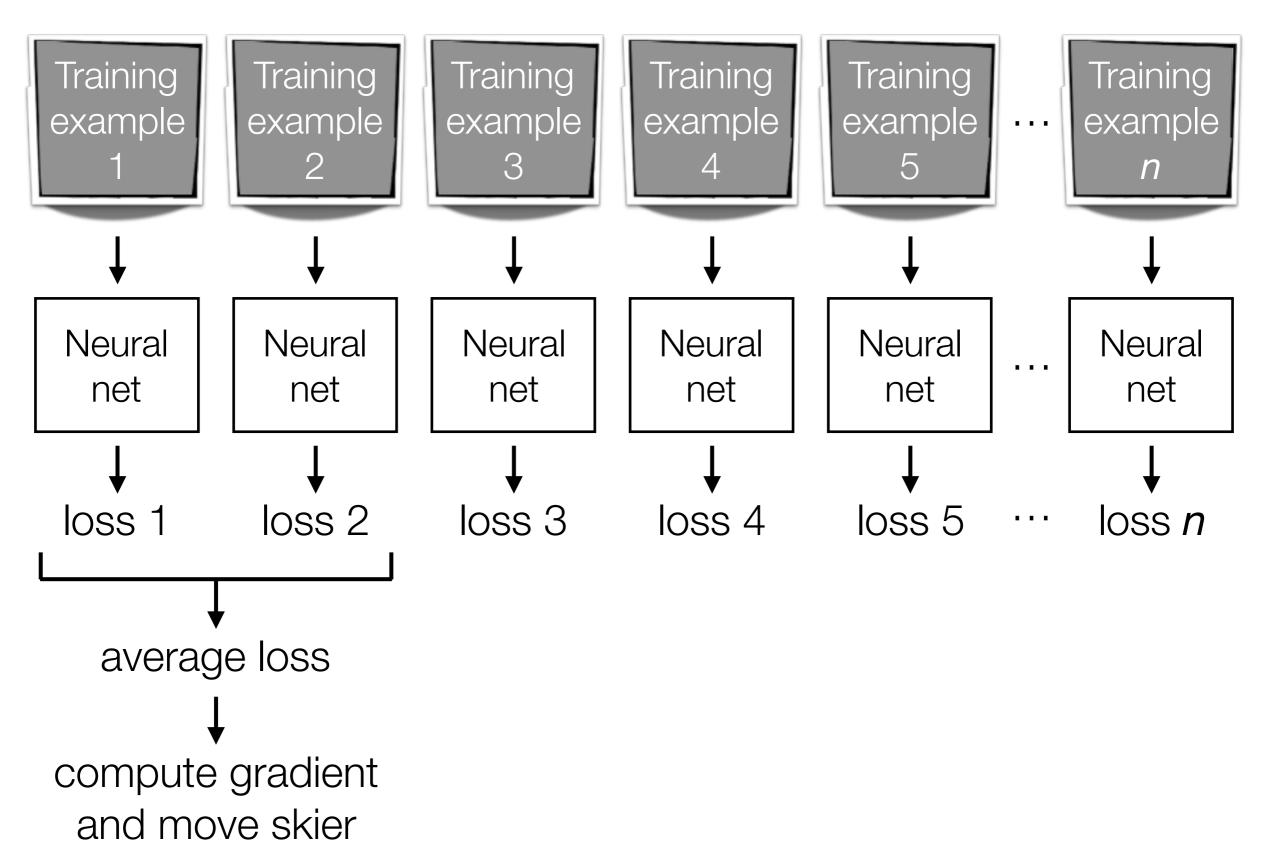








Mini-Batch Gradient Descent



Mini-Batch Gradient Descent

